BlobHouse – A new tessellated structure for the facade

HomePod-facade

HomePod-facade

BlobHouse – has A new structural design for the facade. The work on the main prototype has discovered new ways in making the home a more efficient in terms of footprint and materials usage. Now, the whole house is modular and is being built using a set of components which connect each other and create the whole build.

The house can be used stand alone with no facade which creates straight edges and give a tech look, while using the facade mesh, it creates a more dynamic shape.

BlobHouse – The greenest in house developments

The Modulare Green House

The BlobHouse is a green house prototype which is being developed since 2009 as part of the ICDS Arch research programme. This house it is unique in its way of being a green house as it is designed to match the current economic climate which the world has.

We’ve done research in world wide trends in terms of jobs and economic sustainability and we came to the conclusion that the world needs a change tot the residential market, as there it is not a solid design to sustain and incorporate a green agenda to the meet a Kyoto protocol in world of green development. Our research show an increase in singular entrepreneurial person which are running their own business from home. Other increase is in people working for companies from home. In order to provide a healthy and comfortable environment for these people, the BlobHouse has developed its unique strategy in matching requirements aimed at universal usage for those who work, or own a business environment from home.

BlobHouse – Green Lounge and Kitchen

The access to the house is made via the enclosed garden which leads to the lounge and the kitchen of the house. A stair leads to the work module which is facing the south of the house to keep the office cool, while the office is also providing heath which is conserved and used to warm up the house.

From the lounge you also have access to the bedrooms above . Also above you will find the toilets which act as duo for office and residential use.

The house has been developed to meet plasticity of intersecting transparency in the whole house, where everything looks private from outside and public inside, where everything is familiar and open.

Live Module Intersecting work and green

By incorporating these modules together was with the aim to bring down the cost you spend on your services, but also to give that sense of  living the green. Also we wanted to keep the private part of the office routine and not interfere with the lounge, where in most cases of house developments it was a problem.

The Work module sits above all modules and provides views from wide screen covering the module. At the bottom of the module you will find the reception area where the secretary and archives sit. At the top you will find an open plan space to accommodate up to five people.

BlobHouse Façade

If you ever ask yourself how this façade will be possible to manufacture from glass, you will find that we’re using only only green materials from which can be recycled. The façade will be made from thermoplastic which gives us the opportunity to make the globe to look like this. This is a prototype and some divisions are made to incorporate and maintain a portability of the house as well.

We will post any new developments which we will find suitable for the open public.

Connecting and Mapping the built environment

“Embedded within the virtual structure’ (Abstract space, 2007:21), elegance strives for differentiation in dynamic order, examined between expression of values, as Antonio Saggio (2003) points out, and their internal function within the structure concept.

Tendency is to process the virtual into logical cognition and expression as Peter Eisenman (2003) points out, opening characteristics that should attract the social forces into becoming the potential for complexity in change and growth over time.

An essential part of this interrogation between complex and uncertain is relying on perception of the architectural image, that is reflecting on investigations which were developed by fixed meanings: ‘architecture as infrastructure, as interface, as a system of interconnection’ (de Kerkhove, Derrick, 2001:88), distributed at the boundary between art and science, which occurred over time in our history, as an accumulation in time that determined our perception of space.

“At present, the digital is an interface between cognition and expression. With the  integration of digital methods, primarily through new media animation software, it is possible to view design acts not only as an on-going process within a larger continuum but potentially as ends in themselves. As substantial DeLanda’s writing,  form is always subject to its own internal process, so always becoming. Actualization may be not necessary, or even possible. This stands in contrast to historical views that examined the architectural drawing as a material artefact (albeit a product of                                                         social forces).’ (Tierney, John 2007:21)

 

The accumulation in time in which our perception had developed within the perception of the architectural image, has been, as in animation software packages, manipulated by a coordinate of time.

Time is exponential, ‘change, reversible and reversible’ (Steele, Bret, 2001:15) and storage. This could be patterned by the mass production of goods and services as John Bird (1993) points out, which create an increase in memory storage, by extending the boundary in which we share as a community, as Breet Stele (2001) has mentioned.

The mapping of physical environments it is essential in developing close related spaces to generate efficient connections between occupants and their possible connection in space.

In other words, time has accumulated the information and had generated history and the host. If we generate an ‘articulation’ (Patrick Schumacher, 2007) between time and the logical ‘complexity’ (Patrick Schumacher, 2007), this new fields would extend towards the new ways of developing spaces, as Brett Steele (2001) points out. Space at this instance in time becomes fully interacting with the bodies. As Brett Steele (2001) points out, subjects interacting within the hole continuum should articulate the needs in which they share the most.

Patterns as eating, sleeping, relaxing, becomes the maps in developing embedded spaces, which fully react to the interacting body through space.

By compressing the capsule of space, dividing and assimilating common needs under the same cluster, space becomes efficient as, shown by Brett Steele (2001).

If this gives the point of interaction with the built environment and the natural ecosystem, the connection necessary to place them seamless together, is located within the architectural design.

In this view, a representation of moments through duration, ‘emphasising the analytical ability of the mind’ (de Kerchove, Derrick, 2001:89) is generating idealized static objects located in fixed spaces, creating fixed logical links as Brett Steele (2001) points out.

This connection could be the link between the complexity of our natural environment and the architectural image.

            “Screens, connections, and electronic interfaces are all around us and live contemporaneously in flexible organizations and trans-typologies. Architecture takes  on life; it becomes an electronic and interactive organism, a new type of space is coming to light, indifferently real or simulated, two dimensional or three dimensional, the space makes everything contiguous, mixed, contaminated. The  sense of things is dispersed in an uncontrolled dissemination. Velocity is no longer  physical but is the thought, absolute”                         (Barzon, Furion 2003:10)

The embedded space, linking all the interfaces and components into one electronic device, developing and assimilating the traces of our movements and behaviours through space. The of information in packets of rules, codes, forces, separated into categories to be accessible and at the same time transferable.

These groups of packets, are connected, as Steele Brett (2001) points out, leaving the connection between human and electronic interfaces, to creatively develop connected and flexible organizations.

World Wide Web introduces the elaboration of new multiplicity, cross-operable electronic interfaces, which becomes the fundamental boundary between human interaction and virtual interactive space, suggesting the exploration of form as Brett Steele (2001) points out, to blend  the World Wide Web, to become the embedded mechanism which behaves as the ‘cognitive and intelligent phenomenon’ (de Kerchove, Derrick  2001:21).

As in virtual spaces, the accumulation in every ramification should process the information into logical expression, giving to the spatial experiences the tendency to trans-relate between one another. If taking into consideration the classifier of the classifier of the projected image, into virtual entity, rather than a concept of experience, than the classifier of the projected image would be in transit with the perception of experiences as Barzon Furion (2003) points out.

Mapping Options
Mapping Options

 

Mapping human and urban 2

Man and the natural environment

             “In ecosystems, species’ cooperation and competition are interlinked and held in balance so that the system permits independent activity on the part of each individual of a species, yet cooperatively meshes the activity patterns of all species.”                                                                       (Yang, Ken 2006:51)

As Ken Yang (2008) has mentioned, species of the ecosystem are interlinked by their individual patterns. The individual patterns are linking the community of organisms in their physical environment, in this case, the ecosystem.

The differences between communities define the activity patterns of each individual where interactions take place. The mesh is the representation of the projected image of the ecosystem.

Eco – Grid

FIG.2 – Smart grid Ecosystem  Carbon Pross (2009)

 

The projected image of the ecosystem is exploration the visual memory as David Gissen (2009) has mentioned, is the projected image of the projected environment in which individual is situated.  The individual, as David Gissen (2009) has mentioned, is processing the nature of architecture from caves; ‘the subnature in the dark, wet and cool spaces that mark the origins of architecture’ (Gissen, David, 2009:30).

The architectural image which these spaced had to offer has placed the individual receptors of the architectural partitions in ‘elegant composition’ as Patrick Schumacher (2007) points out.

            ‘Just like natural systems, elegant compositions are so highly integrated that they cannot be easily decomposed into independent subsystems – a major point of  difference in comparison with the modern design paradigm of clear separation of  functional subsystems. In fact the exploitation of natural forms like landscape  formations or organic morphologies as a source domain for analogical transference  into architecture makes a constructive contribution to the development of this new paradigm and language of architecture.’  (Patrick Schumacher, 2007)

As Patrick Schumacher (2007) points here, he places the elegant compositions into another realm of integration, which in terms of their complexity, would be harder to be decomposed into individual subsystems.

If the decomposition is finding its interactions, this could create and drive the individual through realisation of functional subsystems.

The decomposition of natural systems should be made progressively through the partitions of elegant composition in order to understand their structure which would create the ‘new paradigm and language of architecture’ (Patrick Scumacker, 2007).

Architectural space has been modulated through inertia between physical production and philosophical context as Derrick de Kerchove (2001) points out, which had the bases in exploitation and understanding of the natural forms as David Gissen (2009) points out.

The ‘elegant compositions’ (Patrick Scumacher, 2007) are the product of exploiting the physical and philosophical context of the natural form. Exploitations in which architecture has been with natural environment and technology as the ‘practical application of scientific discoveries’ (Philip’s, 2008), has been able to provide the physical endurance to join all the developing organisms into one system, forwarding the joined communities towards new mutations, a joined understanding, always at the barrier between old generated systems and new implemented behaviours developed in connections, articulations, links.

            “On top of the power grid, the wiring of the planet’s information system was accomplished with three integrated but technically superposed ‘webs’, the telegraph cables, the telephone switchboard and the world wide web.”                                                                                     (De Kerchove, Derrick 2001:26)

Just as natural systems architecture is interlinked and held in balance between ‘elegant composition’ (Patrick Scumacher, 2007) and integrated independent components which make architecture to fully integrate into environment.

Man creatively adapts to the constructive contribution as Peter Eisenman (2003) points out,  making the connection of the architecture to transfer the information of organic morphologies into development of built subsystems, separated by exploitation of social context in which the system differentiates.

            “A new continuity, or electromagnetic webness between subjects that are all spatially distant and qualitatively different such as bodies things and the overall whole, the  new constructed environment that surrounds us.” (de Kerchove, Derrick, 2001:88)

The integration of the subsystems in development of architecture would engage with the built environment through digital integration. The complexity is balanced between systems, and thinking the natural environment as a natural system, the power to empower equilibrium as Kim Dovey (1999) points out, should create the needed interaction to generate ‘transcultural systems’ (de Kerchove, Derrick, 2001:88), within the digital and the natural systems.

The new created system and distinction between technological environments and the natural environment would create a seamless extensive high-density landscape incorporating both sides, as Ken Yang (2006) mentioned, the environment and the dwell should be regarded as a dynamic continuum acting together as a whole.

Mapping futures – human and the built environment

Mapping the material

The architectural image transfers the information embedded environments by the moving body to ‘respond and support human use and activities through through the provision of specialized information'(Addington and Shcodek 2005:8) into becoming the ‘smart materials‘ (Addington and Shcodek2005:205).

The interaction generated through the environment  is determined by the interconnectivity defined by body and mind as Derrick de Kerchove (2001) points out.  Every memory acts as a reminder through the suggested space which are defined within the limits of  the surroundings of the mental space, ‘between mental and virtual‘ (Kerchove, de Derick 2001:18).

 Mapping the body

“Words are difficult, but the sound, motion and imagery can really give you the feel”                                                                                                   (New Scientist 2009)

The sensory experience, has the capability to enhance the mechanical power of sensors into becoming the reading mechanism of the human body. As shown in Force Field at the Science museum in London, the experiences lived by the astronauts can be re-translated into remotely architectural products, which act on energy impulses. The body becomes to product of sensorial bounds where the feelings are determined by the electric impulses. As Addington and Shcodek (2005) points out, it is the ‘smart materials’ which articulate various types of products to become the bridge between the manifestation of the material and the actual behaviour of the technology.

 Mapping the dwelling

            “A building cannot be treated as an autonomous object; the architect must also think about its impact and interaction with a variety of systems that no one would consider remotely architectural.”                                     (Addington and Shcodek 2005:226)

The designs which Addington and Shcodek (2005) points here, are the information embedded systems where the interaction between building and environment becomes the variety of the systems, where in the architectural image would engage with other information media, that no one would consider as being architectural.

The example of dwellings which Brett Steele (2001) points out, are the buildings which already implement and better the natural environment to achieve an efficient state, in order to communicate with the user, before and after the construction of the dwell, to perfectly adapt to user’s needs.

It is one of the few conceptual dwellings where the World Wide Web is incorporated into the user’s needs before building the community. It is the map which assimilate the information about the user in order to build a better place. It is the logical assimilation of similar things, which articulate the same behaviours under the same roof, where changes and movements are fluidly transferring the spaces to become the potential in building a new one. As Brett Steele (2001) points out, it is the symbiosis which moves different spaces to become one symbiotically generated, which incorporates and maps the development for the future dwellings.

 

Mapping the urban

Applying logical distributed systems, as shown by Brett Steele (2001), in traffic analysing systems, generate redistribution based on the analyses gathered into previous interaction with the human activities, by reading the data from the video cameras.  In this case the system has been already classified into dynamic linear patters, as being streets, and junctions as being the intersection between at least two dynamic linear patterns.

Classifying the dynamic linear patterns with the classifier of the activities developed by the dynamic linear pattern into codes of interaction, which transfers the information into sets of visual patterns (coloured patterns depending on the activity at one defined point within the given spatial interactivity), and places the information gathered into packets of information. The dynamic linear patterns are then transferred to the visual receptor as Kamijo Lab. (2009) points out.

The information gathered into previous interaction, is placing the visual receptor into direct negotiation with information gathered from the whole grid of dynamic linear patterns.

Connecting them together is accentuating the receptors with large packets of information. The information is stored and negotiated between other connections. This is helping the system to understand the traffic positions within the chosen grid which is than redistributed through the flow of the grid, transferring large loads to other routes creating a homogeneous flow within the city street grid.

The information packets are equilibrated at the same ratio.  This is achieved by transferring the information through traffic lights signals, managing their possition based on the information gathered. This is helping to keep the traffic into continuous flow, helping drivers and city transferability.

An example is being developed by University of Tokyo which is able to measure and monitor the movement patterns of the pedestrians and vehicles. By processing the images from video cameras, they are able to provide close up monitor to avoid accidents, to increase the response time and to redirect patterns.

                         ‘Toward the goals of efficiency and safety, we developed a precise tracking algorithm based on the Spatio-Temporal MRF model which is able to track both pedestrians and vehicles simultaneously against occlusions in the images. During the past few years, this model has been practically applied to acquire traffic flow statistics.                           However, in this paper, we present an improvement of the S-T MRF model so as to deal with flexible objects such as pedestrians as well as rigid objects such as  vehicles. Based on experimental results, this model was able to simultaneously track pedestrians and vehicles against occlusion even in very cluttered situations.                                    Consequently, the improved S-T MRF model was proven to be effective for traffic monitoring at urban intersections.’                                                (Kamijo Lab., 2009)

 

The accumulation of information generated by this process of interaction between the build environment and the natural environment is turning the reality of the urban streets into a digital interface, a display monitor.

Visual sensors, which are the visual receptor for a junction, are placing the information technology at the extension between human body and natural environment. In this case architectural object becomes sensible to human interaction.

Traffic Management Patterns

FIG. 3 – Traffic analysis (Komijo Lab, 2009)

Street Traffic Patterns

FIG. 4 – Traffic colour analysis (Komijo Lab, 2009)

Another example of sensor embedded construction is the St Anthony Falls Bridge which makes the connection between natural environment and the built environment to blend, to respond in real time to interferences, to discover and predict patterns within the internal structure.

                         ‘It has an embedded early-warning system made of hundreds of sensors. They  include wire and fibre optic stain and displacement gauges, accelerometers, potentiometers and corrosion sensors that have been built into the span to monitor of  structural weaknesses, such as corroded concrete and overly strained joints.

On top of this, temperature sensors embedded in the tarmac activate a system that  sprays antifreeze on the road when it gets too cold, and a traffic-monitoring system alerts Minnesota Department of Transportation to divert traffic in the event of an accident or overcrowding.’  (The Economist, 2009)

Information accumulated from this process it is able to interact with the environment and its changeable nature, being able to deliver the information needed to generate and restructure a new pattern which interacts between architectural geometry and the architecture as an embedded organism as Peter Eisenman (2003) points out, simulated into a digital environment, and differentiated in natural form.

Similar embedded digital environments are developed by IBM to better articulate the existing connections between the building itself, but at the same time, to better articulate the connections with the natural environment. A building is no more a static object placed into a physical space, now is instrumented to interact intelligent through the surroundings, in some case being able to make individual decisions, which will affect the community as a whole.

             “Instrumented: Today, many of the systems that constitute a building are managed independently — and many of them are not managed at all for their occupancy, energy use    or thermal effect, due to a lack of sensors and monitors that would be needed to do so.

            Interconnected: A lack of standards for measuring energy use and carbon footprints isolates buildings’ systems from each other and makes practices that can control and manage energy use more difficult to implement. And the lack of standard interfaces across the broad array of  devices and systems in a building makes managing them from a central point or plan nearly impossible.

Intelligent: But with an instrumented and interconnected building, building owners and    tenants can make better decisions about the building’s energy use — and can often rely on the green building to “make those decisions” itself. Additionally, smart policies — new government standards for energy efficiency and incentives for architects, builders,      developers and owners, so that savings on future operating costs can go to the people making the upfront investments — can combine with incentives for utilities to achieve a    reduction in buildings’ demands for energy and water.’                                                                                                                                                                    (IBM – Smarter planet, 2009)

Is the connection with the information technology the pathway in directing the architecture towards new corporeal formations of spaces directed by architecture of logic and cognition as Derrick de Kerchove (2001) points out.

It is the new architectural form of the articulation in which man attempts to define the possibilities of space, to connect the spaces into becoming the main development in architectural practices.

Space is at the boundary between physical negotiation of logical cognition, and the formal representation of abstract thought as Dan O’Sullivan (1994) points out, than the represented form is interacting the connections of space into becoming the interactive space.
As Furio Barzon (2003) points out, symbols are taking the trajectory of signage which is placing the information into points of communication, generating physical interaction. In this way, space is becoming inter-connected by articulated points, generating forms of flow from packets of information through the entire system, which articulates and expands continuously, creating the framework for the embedded mapped world.